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Teaching R2 in Regression

Kenneth Sutrick, Murray State University, Murray, Kentucky, USA

ABSTRACT

In regression the coefficient of determination, , measures how well a regression line fits a set of data.  How does 
do this?  Exactly what does measure?  It is taught that is the percent of explained variance.  These are nice 

words but what do they really mean? The measure is perhaps the most confusing topic in regression and is 
confusing to students.  This paper suggests ways to teach what the coefficient of determination and its components 
and interpretations are about.
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INTRODUCTION

The measure , the coefficient of determination, tells us how well a regression line fits a set of pairs of data. How 
does do this? Exactly what do the components of measure anyway and how does this relate to the fit of a 
line? Anyone with even just a little more than an introduction to regression also knows that is the percent of 
explained variance. Exactly what does percent of explained variance mean?  While many people use this phase, 
there is much confusion about what it is really about.  Unfortunately students will likely be confused about all of this 
when they are taught regression.   This paper uses some strategically defined data sets and the visual representations 
of scatter diagrams to present ideas for the teaching of and the percent of explained variance.

WHERE THE REGRESSION LINE COMES FROM AND ABOUT R2

The interpretation of the measure as percent of explained variance comes from the theoretical formula:  ( ) = ( | ) + ( ( | )) with = ( ( | ))/ ( ), (Bickel and Doksum, 1977, 36). One 
must carefully define what all these symbols represent, such as ( | ) denoting the regression equation and ( | ) being how far a typical data point tends to be from ( | ).   Of course using this formula in an 
introductory statistics class will get you nothing but hate. This formula is far above introductory statistics but can be 
understood and taught at an elementary level in a simple regression model. We now present methods to explain and 
teach these concepts. 

To put all of this in context it will be necessary to review the subject of regression.   For example, a cell phone 
company will want to predict the data requirements of its customers and will probably use regression to make the 
predictions.  Suppose a hypothetical data set is ( , ) = (4,31) (6,26) (10,46) (12,41) where is family household 
income (in tens of thousands of dollars) and is the yearly number of gigabytes of cell phone data used by the 
household.  Figure 1 has the data scatter diagram along with two potential prediction lines (out of infinitely many 
possible prediction lines), a dashed line: = 16 + 2.5 , and a black line: = 20 + 2 .   

Figure 1: Data and Potential Prediction Lines

The points in the data set do not fall on a line so that any line that is used to predict with will have some prediction 
error.  Since you will ultimately use only one line to predict with a criteria to distinguish between lines is necessary. 
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That criteria is the Root Mean Square Prediction Error ( ).  The calculation for both lines is given 
below in Table 1.  In the calculation ‘ ’ is the number of pairs of data (four here), ‘ ’ stands for predicted ,  and 
the symbol ‘ ’ stands for Sum of Squared Errors.

Table 1: Root Mean Square Error Calculations     

RMSE Calculations for the Dashed Line:                                   RMSE Calculations for the Black Line:

      Actual     Predicted       Prediction      Squared                      Actual     Predicted        Prediction      Squared 
          Y                Y                Error             Error                             Y               Y                  Error             Error

          = 16 + 2.5                                          = 20 + 2                      
4      31             26                    5                   25                      4      31             28                     3                   9
6      26             31                  –5                   25                      6      26             32                   –6                  36

10     46             41                    5                   25                     10     46             40                     6                  36
12     41             46                  –5                   25                     12     41             44                   –3                   9
                                            Sum=0   Sum= = 100                                                     Sum=0    Sum= = 90( ) = ( ) = = 5,       ( ) = ( ) =   
                                                                                                                                                                         4.7434.                                   
In regression the measures a typical prediction error.  This is evident from the calculation of the for 
the dashed line.  For the dashed line the prediction error is 5 (ignoring the minus signs) for each pair of points and so 
a typical prediction error is obviously 5 and the is therefore 5. The of 4.74 for the black line is 
between the actual errors, which are either 3 or 6.  The of 4.74 for black line is smaller than the of 5
for the dashed line showing that the black line has smaller prediction errors and is the better line for predicting 
from .  The regression line (by definition) is that line that has the smallest out of all possible lines and for 
this data set the black line is the regression line.  To summarize, the first measure of fit in regression has two 
purposes.  The first purpose is as a criteria for finding the best fitting line and the second purpose of is to tell 
you what a typical prediction error is for that best line.

Calculus (the part for minimizing functions) is used to find the equation of the regression line by finding the line that 
minimizes the .  If we write the equation of a line as:  = + , then as one learns in statistics, calculus 
proves that the equation for the regression line has slope: = ( )( ) and intercept: = , where is the 
correlation and the ’s can be either the sample ’s or population ’s (as long as one is consistent between the 
top and bottom in the formula for ).  For the data set in Table 1, it is easy to check that = .8, = 8, = 36, and 

the sample ’s, and , are = = ( ) ( ) ( ) ( ) = 40/3 and  = =( ) ( ) ( ) ( ) = 250/3, so that = .8 // = 2,  and = 36 2(8) = 20.  This gives 

the regression line as: = 20 + 2 , which is the black line above.

To look at the next aspect of fitting equations to data, consider another prediction problem.  Suppose that we are 
predicting yearly incomes of people in the United States and the is $200,000.  (For example, if we predict 
that every single person in the US makes exactly $300,000 per year, this would give an of at least $200,000.)  
However this would be a terrible prediction since we could do much better by just predicting that everyone makes 
the (available) average US income.   On the other hand if we were predicting Bill Gates’ yearly income and the 

were $200,000 this would be an excellent prediction, given Bill Gates’ place on the upper end of the income 
scale.  Both situations have the same , yet in one case the predictions are terrible and in the other case the 
prediction is excellent.  This tells us that we need something else besides when talking about fitting equations 
to data. That something else is called .

Before getting to the exact definition, to see what is about consider the following two data sets:   Data Set A is ( , ) = (1,0) (1,2) (3,2) (3,4), and Data Set B is ( , ) = (1,0) (1,2) (99,98)(99,100). After calculation, it is 
seen that for Data Set A: = .707107, = 2, = 2, = 4/3, = ( ) = 8, and = 8/3,
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giving regression equation coefficients: = // = 1 and = 2 (1)2 = 0.  Therefore for Data Set A the 

regression equation is:  = 0 + 1 .   After calculation, it is seen that for Data Set B: = .999792,= 50, = 50, = 9604/3, = ( ) = 9608, and = 9608/3, giving regression equation 

coefficients: = // = 1 and = 50 (1)50 = 0, and also giving a regression equation for Data Set B 

of: = 0 + 1 .    Both data sets have the same regression equation.    A graph of both data sets with their 
regression lines are in Figure 2.  Note that Data Set A and Data Set B are on different scales.  This will ultimately 
illustrate what is about.

Figure 2: Two Data Sets with the Same Regression Equation but Different Fits

The RMSE for both data sets is computed in Table 2.

Table 2: Calculations for Data Set A and Data Set B
Data Set A                                                                             Data Set B

          = 0 + 1                                 = 0 + 1                
1       0             1              –1            1                           1      0             1               –1            1                  
1       2             1                1            1                           1      2             1                 1            1                                                
2       1             2              –1            1                          99    98           99              –1            1                                                          
2       3             2                1            1                          99   100          99                1            1
                                    Sum=0    = 4                                                       Sum=0    = 4( ) = ( ) = = 1,       ( ) = ( ) = = 1.
The prediction error, ,  is 1 for every pair of data in both data sets.

Both data sets have the same regression line and the same .  If you are using as a measure of fit then 
the line = 0 + 1 fits both data sets equally well.   However when looking at Figure 2, it appears that the line fits 
Data Set B better (points look closer to the line).  The fact that Data Set B is fit better is also evident in the 
correlations, since the correlation between X and for Data Set B is approximately .9998, while the correlation 
between X and Y for Data Set A is approximately .7071. So cannot distinguish between the two data sets. 
This is where the second measure of fit comes into play, can tell the difference in fit in these two data sets.  
Before defining exactly, let’s look closer at why the line fits Data Set B better.  In Data Set B the distance of the 
points to the line (measured by the = 1) is small compared to the spread in the -values (the range of the ’s 
is 0 to 100, and from previous the of the ’s is = 9608/3 56.6).  While in Data Set A the distance of the 
points to the line (measured by the = 1) is similar to the spread in the -values (the range of the ’s is 0 to 3,
and the of the ’s is = 8/3 1.6).  In Data Set B we are comparing an error of 1 to a -range of 100 (or 
error 1 to ( ) = 56.6), while in Data Set A we are comparing an error of 1 to a -range of 3 (or error 1 to ( ) = 1.6). This is why the line fits Data Set B better.  What does is to measure the extent to which this 
happens. Since the standard deviation is the more common way to measure  spread (compared to the range as a 
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measure of spread), will be defined by in some way comparing the to ( ).  Since = ,
this gives that is also a measure of the distance of the points to the line (just on a different scale). For example, 
if SSE is small then will be small and vice versa.  Since the sample standard deviation is ( ) =( 1), this shows that is also a measure of the spread in the ’s (just on a different scale).  This is in 
the sense that if is large then ( ) will be large also and vice versa. Finally is defined as

Equation 1:                                = 1         or      = 1 × 100%.

If a line fits the data well then the prediction error, as measured by , will be much smaller than the spread in the 
’s, as measured by , and will be close to 1 (or 100%).    For Data Set A: = 4, = 8, and = 14 8 = .5, while for Data Set B: = 4, but = 9608, and = 1 4 9608 = .999584.  Thus can 

distinguish between Data Set A and Data Set B while cannot. In this sense can be called the coefficient of 
determination. 

The two measures of fit in regression, and , can be characterized in the following way.   There are 
infinitely many lines that could be fit to a set of data and chooses the best one (the regression line) out of that 
infinite set of lines. This is illustrated in the Figure 3 below.  then measures and tells you what a typical 
prediction error is for that best line, the regression line.   Once you have the best line, tells if that best line fits or 
not.    This is illustrated in Figure 4 below, where distinguishes between three different scatter diagrams.   Figure 
3 and Figure 4 demonstrate the difference between and . Sometimes even the best line does not do very 
well, which will show.

Figure 3:  The Purpose of RMSE
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Scatter Plot with Prediction Lines picks out the best line 
for predicting from . The 
regression line (in black) is the 
best prediction line.  The 
of the regression line, when 
calculated here, is about 2.5
units. A typical data point is
about 2.5 units directly above or 
directly below the black line. 
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Figure 4:  Data Sets with Different Values  

is a relative measure of fit while is a more absolute measure of fit.   In a data set if someone tells you that 
= .5, then you know that the data looks something like Data Set D.  If someone tells you that the = 108

and you do not have other any information, then you don’t have any idea what the data looks like (except that it 
could not look like Data Set E, which has = 0).   In a relative sense we know that we want to be small 
and to be high. You would need other information to tell if 108 is an acceptable prediction error or not.  In one 
situation 108 might be good and in another situation it might be terrible. The measure utilizes that other 
information. For a data set the can be anything between zero and infinity but with smaller better and zero 
best.  However has an absolute scale of 0 to 1.   In the absolute best is 1 and the absolute worst is 0.  If Data 
Sets C, D, and E in Figure 4 were all on the same scale (range of ’s and ’s the same, which you cannot tell since 
the axis are not labeled) then the could distinguish between them and would tell us that the regression line 
fits E best then D then C.  However, ultimately is a more important measure of fit since it is comparable across 
all data sets whether they have the same and range or not. [That doesn’t mean is not important since it 
tells you a typical prediction error.  With knowledge of only the , you could still decide if that size of 
prediction error is acceptable.]

Data Set C

Data Set D

Data Set E

says the regression line (in black) 
is the best line for predicting from .
However since this data is basically a ball 
and balls do not look like lines, no line 
(including the regression line) fits very 
well.

Here = 0

says the regression line (in black) 
is best here. The regression line fits fairly 
well. 

Here = .5, when calculated.

says the regression line (in black) 
is best here also. Here the regression line 
fits perfectly, there is no prediction error.

Here = 1.
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PERCENT OF EXPLAINED VARIANCE

The term “percent of explained variance” in regression is short for the “percent of explained variance of which is 
explained by the variability in the regression equation”.  Now what does that second phrase mean?  The meaning is 
illustrated by Data Set F and Data Set G in Figure 5 and explained thereafter.   The black line in both pictures is their 
respective regression lines. 

Figure 5:  A Graph of the Regression Line for Two Different Data Sets 
                                                                      

In Figure 5 you can see that Data Set F has a relatively low but positive correlation, while Data Set G has a 
relatively high and positive correlation.  Since the slope of the regression line is: = ( ) ( ), where r is 
the correlation, if you don’t worry too much about the ’s then for Data Set F will be small but positive while 
for Data Set G will be high and positive. This tells you that the regression line for Data Set F is relatively flat, while 
the regression line for Data Set G will be relatively steep. This is evident in Figure 5. 

The percent of explained variance compares the variability in the -values to the variability in the regression line.  
For the moment we will use the range (top to bottom) as a measure of variability.  In both data sets the lowest -
value is = 0, at the point ( , ) = (1,0), and the highest -value is at = 4 at the point (4,4).   Both data sets 
then have -ranges of 4 or said another way a -variability of 4.  For the range of the regression line for Data Set F, 
the lowest part of the regression line has = 1.75 at the point ( , ) = (1,1.75) and the highest point on the 
regression line has = 2.25 at the point (4,2.25), giving a regression line range of . 5 = 2.25 1.75. This 
regression line range will be called the RegLine-variability.   For Data Set F we are comparing a RegLine-variability 
of 0.5 to a -variability of 4.0. Since 0.5 is quite a bit smaller than 4.0, we say that the regression line for Data Set 
F has a low percent of explained variance.   For Data Set G the lowest part of the regression line has = .25 at the 
point  (1, .25) and the highest point on the regression line has = 3.75 at the point (4,3.75), giving a regression 
line range of 3.5 = 3.75 .25.   For Data Set G we are comparing a RegLine-variability of 3.5 to a -variability of 4.0, which are almost the same. We say that the regression line for Data Set G has a high percent of explained 
variance.  The comparative ranges or distances are illustrated in Figure 6, showing what percent of explained 
variance is about.  
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Figure 6: Illustrating Percent of Explained Variance

                                                 
                Small % of Explained Variance                                                High % of Explained Variance
                                                                       
There is a second qualitative and quantitative way to think about the percent of explained variance.  Think about 
how can you go from the point ( , ) to a data pair ( , ).  This is accomplished as follows. Starting from ( , ) go 
along horizontal to the point ( , ),  then go vertical to the regression line to the point ( , ), and then go from the 
point ( , ) to the point ( , ), as illustrated in Figure 7.

Figure 7:  An Alternative Interpretation of Percent of Explained Variance

On the journey from ( , ) to ( , ), in general the longer the distance compared to the distance the 
higher the percent of explained variance. This is evident in Figure 6 where when moving along the regression line 
you move a greater vertical distance up or down for Data Set G than for Data Set F, while moving off the regression 
line to the points requires a smaller distance traveled for Data Set G compared to Data Set F.  [The point ( , ) is on 
the regression line since you get by plugging in into the regression equation. The point ( , ) is also on the 
regression line since = ,  the regression equation = + can be rewritten as = + .
When plugging in for into the equation, the predicted is .]

Figure 6 showed variability using ranges since they are easy to see on a scatter diagram. The actual percent of 
explained variance is not defined in terms of ranges, but instead defined with the more commonly used measures of 
spread such as standard deviations and variances, which are not easy to see on pictures. [We will need to remember 
that = .] For the actual quantitative definition of percent of explained variance, start with and then
rewrite as = + ( ). Next subtract from both sides to get:  = + or  ( ) =+ .  After that perform the calculations in Table 3 (done on the cell phone data since it has fewer 
numbers).  For the percent of explained variance we will quantitatively compare the spread in the regression line to 
the spread in the ’s.
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Table 3:  Showing SSY = SSR + SSE

             = 20 + 2              ( )                               
4       31              28                 –5               25                  –8                64                 3                9
6       26              32                –10            100                 –4                16               –6               36

10      46              40                  10             100                   4                16                 6               36
12      41              44                   5               25                    8                64               –3                9         
      = 36                                          Sum= =250             Sum= = =160          Sum=SSE=90
                                                              = ( )                    =                   = .

As learned in introductory statistics and shown previously in the paper, the sum is used to calculate ( ). The 
symbol ‘ ’ stands for “sum of squares regression”, with the name coming from the fact the predicted , the ’s, 
in come from the regression line.  In Table 3 you can see that in this case  = + .  It turns out that 
in the theory of regression it can be proved that this happens for every data set as long as there is an intercept term in 
the regression equation and the  come from the regression equation (as opposed to predictions from some other 
line).  [This relationship is in fact related to the Pythagorean Theorem, which says that if two legs of a triangle are 
perpendicular then a2 + b2 = c2.   If you consider the -values as a vector and the -values as a vector, the 
theory of regression shows that  and  are perpendicular vectors.  So

This relationship will give an alternate formula for , compared to Equation 1. You get that by dividing everything 
in the relationship by , which gives  = + / or  1 = / .   Since 
the definition of is = 1 , the above relationship now gives = = .  From 
this version of we get the interpretation “percent of explained variance” in the following way. One must first be 
specific about how to calculate variance.  Remember that  ( ) = /( 1), so that ( ) =( ) = ( ) = /( 1). In other words you get ( ) by taking the ’s, subtracting their average, 
squaring them, adding the squares, and then dividing by 1.  You would do the same thing to the ’s to get  ( ).  It is necessary to first find the average of the ’s.  If predicting with a line so that  = + ,  for 
constants and , then averaging over all predicted values leads to = + .  If as is the case for the regression 
line, = , then  = ( ) + = .  [For the Black Line, in Table 1:= (28 + 32 + 40 + 44) 4 = 36 = .]  So in = you are taking the ’s, subtracting their average, 
squaring them, adding the squares, and then dividing by 1.  You must then get ( ).   Therefore

= = = /( 1)/( 1) = ( )( ).
( ) is a representative of the variability of , and since comes from the regression equation ( )

represents the variability in the regression equation. The above ratio is where the meaning of as the percent of 
explained variance comes from (a percent is a part divided by the whole times 100%). [Note: some books use ,
“sum of squares total” for .]  For the cell phone data: = = 160 250 = .64.

The multiple correlation is defined as = .  In the case, where there is only one predictor ,  it can be proved 
that  = , where = ( , ).  Thus can be interpreted as a correlation.  For the cell phone data: = .8 and = . 64 = .8.  [When there is one predictor then = also].  There is also a second interpretation of .   From 
Table 3, , = (31,28) (26,32) (46,40) (41,44) and if you correlate these two sets of numbers it can be proved 
that = ( , ) also.  [For the cell phone data: , = .8.]  The closer the predictions are to the actual 

’s, the higher the ( , ) will be, and the higher and will be.

a

 

 
 bc

a2 + b2 = c2 + = .] 
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CONCLUSION

The measure , the coefficient of determination, is the ultimate measure of whether a regression equation fits a 
data set. Therefore is quoted all the time.  However despite its constant use there is a lot of mystery about what it 
really means. That results in a lot of difficulty in the teaching of .  This paper illustrates how one might teach 
what the components of are about and therefore lets students understand how measures whether a regression 
equation fits or not.  Next the coefficient of determination has an interpretation as the percent of explained variance. 
This phrase is also confusing and the paper suggests ways of looking at explained variance so that it can be 
understood by students.  Finally the multiple correlation, , is discussed, completing the teaching of fit in 
regression. 

REFERENCES

Bickel, P. and Doksum, K. (1977). Mathematical Statistics.  San Francisco: Holden Day. 

Kenneth Sutrick, Ph.D., teaches statistics in the Bauernfeind College of Business at Murray State University, 
Murray, Kentucky.  He was born in Green Bay, WI, therefore born a Green Bay Packers Fan.  His research 
interests include portfolio theory, and options. 


